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Abstract. The odd crossing number of G is the smallest number of pairs
of edges that cross an odd number of times in any drawing of G. We
show that there always is a drawing realizing the odd crossing number
of G that uses at most 9k crossings, where k is the odd crossing number
of G. As a consequence of this and a result of Grohe we can show that
the odd crossing number is fixed-parameter tractable.

1 Introduction

The crossing number of a graph G, denoted cr(G), is the smallest number of
intersections in any drawing of G. There are many variants of this fundamental
notion; in this paper we concentrate on the odd crossing number which counts
pairs of edges that intersect an odd number of times. More formally, ocr(G) is
the smallest number of pairs of edges in any drawing of G that cross an odd
number of times. Similarly, we can define the pair crossing number of G, pcr(G),
as the smallest number of pairs of edges that intersect in any drawing of G. For
historical background and summary on different notions of crossing numbers,
see the paper by Pach and Tóth [4].

From the definition we have

ocr(G) ≤ pcr(G) ≤ cr(G).

We also know that cr(G) ≤ 2 ocr(G)2 ([4], for a new proof, see [6]) and cr(G) ≤
2 pcr(G)2/ log2 pcr(G) [9,8]. And while we do know that ocr(G) �= cr(G) in
general [5], it is possible that pcr(G) = cr(G) for all G.

This suggests the question of how close we can come to realizing this suspected
equality in a drawing; that is, what can we say about the number of crossings
needed in a pcr-optimal drawing? Maybe surprisingly, the best upper bounds we
know are exponential [7] (see the end of Section 3 for a discussion).

To the extent that we believe that pcr(G) = cr(G) this is a bit of an embar-
rassment, since the bound should be the identity. On the other hand, the pair
crossing number does tie in very closely with the string graph problem, and a



proof that pcr(G) = cr(G) based on redrawing would have to change which pairs
of edges intersect: if we restrict redrawing moves to those that do not change
which pairs of edges intersect, there is an exponential separation between pair-
crossing number and crossing number due to due to Kratochv́ıl and Matoušek [3]
(they phrased their example for string graphs).

In this paper we address the question of how many crossings are needed to
realize an ocr-optimal drawing. We prove an exponential upper bound, similar
to what was shown in the case of pcr. It is not inconceivable that the actual gap
is exponential; this would be a very interesting result indeed.

Grohe showed that cr(G) ≤ k can be decided in quadratic time for any fixed
k [1]. This means that the crossing number problem is fixed-parameter tractable: it
can be solved in time O(nc) for some constant c not depending on the parameter
k. In Section 3 we show how to combine our exponential upper on crossings in an
ocr-optimal drawing with Grohe’s proof to conclude that ocr can also be decided in
quadratic time. This result is somewhat unsatisfactory in that it relies on Grohe’s
proof rather than establishing a reduction that would allows us to transfer the
fixed-parameter tractability result from cr to ocr automatically (such reductions
are known as fpt-reductions). If we had such a reduction, Grohe’s result could be
replaced when a better fixed-parameter algorithm for crossing number is found.
Indeed, Grohe’s result has very recently been improved from quadratic to linear
time by Kawarabayashi and Reed [2]. Kawarabayashi and Reed also claim (albeit
without supplying details) that ocr and pcr are fixed-parameter tractable. They
do not have a reduction either, but have to verify that their constructions work
for ocr and pcr in place of cr. We believe that their missing details can be filled in,
for example, by using Theorem 1 and Theorem 3.2 from [7].

One motivation behind the introduction of the crossing number variants pcr
and ocr was the hope that they would turn out to be easier objects to deal with
than the crossing number itself. For example, the odd crossing number problem
can be rephrased as a shortest vector problem in an appropriately chosen vector
space. The hope remains that through these alternative approaches we might
obtain feasible approximation algorithms or parameterized algorithms solving
the crossing number problem (the results by Grohe, Kawarabayashi and Reed
do not yield feasible algorithms).

2 ocr-Critical Drawings

In this section we show that a drawing of a graph realizing the odd crossing
number has at most an exponential number of crossings.

Theorem 1. For any graph G there is a drawing of G with odd-crossing number
c = ocr(G) and crossing number at most 9c.

The core of the proof is a redrawing idea: consider a drawing of G, and a par-
ticular edge e of G. Imagine that e is drawn as a horizontal line segment, and
consider an arbitrary subsegment I. Consider the intersections of e with other
edges that occur within I. Without changing the odd-crossing number of the



drawing, we can rearrange these intersections within I such that for each edge
f �= e, the intersections of f and I are consecutive along I: We can do this by
simply pushing intersections to the left or the right. Whenever an intersection
of f with e is pushed past an intersection of f ′ with e, it yields two new inter-
sections between f and f ′, which does not change the odd-crossing number of
the drawing. Next, we claim that we can redraw G such that each edge f �= e
has at most 2 intersections with I, without changing the odd-crossing number
of the drawing. Consider every edge f that intersects I, one at a time. Split f at
each intersection with I, creating a set of curves SI with endpoints in I, except
that two of the curves have one endpoint at an endpoint of f .

Let α and ω be the two curves in SI that have one end at an endpoint of f .
Let Sα be the set of curves in SI that begin and end on the same side of I where
α ends. Let S′

α be the set of curves in SI that begin and end on the other side
of I, and let S be the set of curves that begin and end at opposite sides of I.

Our goal is to reconnect the parts of f so that the resulting curve traverses
all of the original parts of f except on a small neighborhood of I, and intersects
I at most twice. We proceed as follows: Start by following α from an endpoint
of f to its intersection with I. Continue by following all of the curves in Sα,
one after the other, then the curves of S, then the curves of S′

α and end by
following ω to the other endpoint of f . Move the endpoints of the curves at I
slightly, and connect consecutive curves in a small neighborhood of I such that
the resulting curve f ′ intersects I as few times as possible. (For the moment, we
ignore self-intersections of f ′.) The only steps at which intersecting I may be
unavoidable occur when going from S to S′

α and when going from S′
α to ω. Thus

f ′ redraws f using at most two intersections with I. Observe that the redrawing
f ′ intersects I exactly once if and only if either 1) α and ω approach I from
opposite sides and |S| is even, or 2) α and ω approach I from the same side
and |S| is odd. Before redrawing, the number of intersections between f and I
is 1 + 2|Sα| + |S| if α and ω approach I from opposite sides and 2 + 2|Sα| + |S|
if α and ω approach I from the same side. Thus, the number of intersections
between f and I is odd if and only if the number of intersections between f ′ and
I is now one. Also, the parity of intersection of the redrawing f ′ with any other
edge is the same as the parity of f with that edge, since f ′ and f agree except
for in a small neighborhood of I, where f intersects only I.

As we mentioned earlier, the redrawing f ′ might contain self-intersections,
however, these can easily be removed (see [6], for example). Repeating this pro-
cess for each edge that intersects I results in at most 2i intersections of edges
with I, where i is the number of edges f �= e that intersected I an odd number
of times before the redrawing.

We now apply this idea to bound the number of crossings necessary to realize
a particular odd crossing number.

We begin with a drawing of G achieving ocr(G). Applying Theorem 2.1
from [6] allows us to assume that all even edges are without intersections. Then
there are at most k := 2 ocr(G) edges, e1, . . . , ek, involved in intersections in
the drawing of G under consideration. We will redraw these edges such that



for 1 ≤ i < j ≤ k, the number of intersections between ei and ej is at most
2(3i−1). We redraw the edges in order, as follows: Begin by applying the proce-
dure described earlier to e1; then each other edge intersects e1 at most twice,
as desired. We want to keep the intersections along e1 now, so we should not
apply our procedure to subsequent edges. Instead, during the jth step we split
ej into segments at every intersection with an edge ei with i < j, and apply the
procedure to each of those segments.

By induction, the number of intersections of ej and all ei with i < j is at
most

∑j−1
i=1 2(3i−1), which equals 3j−1 −1. Hence ej is split up into at most 3j−1

segments, and after applying the procedure to each segment, each ei with i > j
has at most 2(3j−1) intersections with ej, as desired.

The total number of crossings is
∑

1≤i<j≤k 2(3i−1), or
∑k

j=1
∑j−1

i=1 2(3i−1) =
∑k

j=1(3
j−1 − 1) ≤ 3k.

3 The Parameterized Complexity of ocr

In this section we will derive a quadratic time algorithm for computing ocr by
adapting Grohe’s result [1].

Grohe showed that for a fixed k it can be decided in quadratic time whether
the crossing number of a graph G is at most k [1]. Grohe’s algorithm proceeds
as follows: for some function w(k) only depending on k it tests whether the
tree-width of G is at most w(k); if that is not the case, then either the crossing
number of G is larger than k or we can find a part of G that is not involved in
any crossing in a cr-optimal drawing. If the crossing number is larger than k, we
are done; otherwise we can replace G with a smaller graph and keep track of its
crossing-free part. Repeating this procedure we will eventually reach a graph of
bounded tree-width for which we can decide whether cr(G) ≤ k using Courcelle’s
theorem (details to be explained below).

This central result of Grohe’s paper is contained in his Corollary 8 [1] which
we reproduce nearly verbatim below. Here, a k-good drawing with respect to F
of G is a drawing of G with crossing number at most k in which none of the
edges of F are involved in a crossing.

Proposition 1 (Grohe [1]). There is a quadratic time algorithm that, given a
graph G and an edge set F ⊆ E(G), either recognizes that the crossing number
of G is greater than k or computes a graph G′ and an edge set F ′ ⊆ E(G′) such
that the tree-width of G′ is at most w(k) and G has a k-good drawing with respect
to F if and only if G′ has a k-good drawing with respect to F ′.

We cannot immediately apply Grohe’s result as stated to help us settle the param-
eterized complexity of computing the odd crossing number, since it is not clear how
the odd crossing number of G′ (with the planarity restriction on F ′) relates to the
oddcrossingnumber ofG (with theplanarity restrictiononF ).Fortunately, a closer
look at Grohe’s proof shows that a stronger version of the proposition is true.

For a graph G let a (k, �)-good drawing with respect to F be a drawing of G
with crossing number at most k and odd crossing number at most � in which



none of the edges of F are involved in any crossings. An inspection of Grohe’s
proof of his Corollary 8 shows that it is true for (k, �)-good drawing in place of
k-good drawings. The reason is that in the core step of the proof [1, Lemma 5]
the redrawing is local and does not increase the odd crossing number.

Lemma 1. There is a quadratic time algorithm that, given a graph G and an
edge set F ⊆ E(G), either recognizes that the crossing number of G is greater
than k or computes a graph G′ and an edge set F ′ ⊆ E(G′) such that the tree-
width of G′ is at most w(k) and G has a (k, �)-good drawing with respect to F if
and only if G′ has a (k, �)-good drawing with respect to F ′.

By Theorem 1, G has odd crossing number at most k if and only if G has a
(9k, k)-good drawing with respect to F = ∅. We can now proceed as in Grohe’s
algorithm to look for such a drawing of G. We either find that the crossing
number of G is larger than 9k, which implies that the odd crossing number is
larger than k (actually, much larger by the quadratic bound between odd crossing
number and crossing number due to Pach and Tóth [4]) or we obtain a graph
G′ of tree-width at most w(k) and an edge set F ′ such that G has odd crossing
number at most k if and only if G′ has a (9k, k)-good drawing in which none of
the edges of F ′ are involved in an intersection.

If we can now show that “having a (9k, k)-good drawing with respect to F”
can be expressed in the second-order monadic logic of graphs, we can apply
Courcelle’s theorem which states that formulas of second-order monadic logic
can be decided in linear time for graphs of bounded tree-width (remember that
the tree-width w(k) of G′ depends on k only, and is therefore considered fixed).
Consider a (9k, k)-good drawing of G if it exists. Replacing every crossing with a
new vertex yields a planar drawing; adding four more vertices and edges around
this vertex we can ensure that a planar drawing of the resulting graph corre-
sponds to a (9k, k)-good drawing of G. (See Figure 1.)

Fig. 1. Two crossings, before (left) and after (right)

Using monadic second order logic we can specify a set of at most 2k edges
(not in F ) and subdivide each of those 2k edges 3(9k) times. These subdivided
edges can now be used to express that there is a (9k, k)-good drawing of G with
respect to F : We can express that the ith intersection along edge e is also the jth
intersection along edge f by identifying the 3i−1st vertex along the subdivided e
with the 3j−1st vertex along the subdivided f and adding edges between vertices
3i − 2 and 3i on e and f to build the 4-cycle in the right half of Figure 1 to
ensure e and f actually cross (rather than just touch) at their intersection point.
Using this, we can write down explicitly a formula describing the order in which



edges cross every particular edge. While this leads to a formula exponentially
large in 9k, this is not a problem, since k is fixed. Since we are specifying how the
crossings occur explicitly, we can restrict ourselves to those formulas describing
a drawing with odd crossing number at most k.

Theorem 2. For a fixed k we can decide ocr(G) ≤ k in quadratic time.

What about the pair-crossing number? A drawing of a graph can always be
redrawn without making two pairs of edges intersect that did not intersect in
the original drawing while reducing the crossing number of the drawing to at
most k2k (where k is the number of edges involved in crossings) [7]. If we start
with a drawing that realizes the pair-crossing number of the graph, this shows
that we can always assume that a pair-crossing critical drawing has crossing
number at most k2k. With this result we can repeat the argument we used for
odd crossing numbers, allowing us to conclude that the pair crossing number is
fixed-parameter tractable.

Theorem 3. For a fixed k we can decide pcr(G) ≤ k in quadratic time.
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3. Kratochv́ıl, J., Matoušek, J.: String graphs requiring exponential representations.
Journal of Combinatorial Theory, Series B 53, 1–4 (1991)
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7. Schaefer, M., Štefankovič, D.: Decidability of string graphs. In: STOC-2001. Pro-
ceedings of the 33th Annual ACM Symposium on Theory of Computing, pp. 241–246
(2001)
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